- 定做培养基/定制培养基
- 颗粒培养基
- 标准菌株生化鉴定试剂盒
- 预灌装即用型成品培养基
- 2025年版中国药典
- 促销/特价商品
- 院感/疾控/体外诊断/采样管
- 样品采集与处理(均质)产品
- 按标准检索培养基
- 模拟灌装用培养基
- 干燥粉末培养基
- 培养基添加剂/补充剂
- 生化反应鉴定管
- 染色液等配套产品
- 对照培养基/标准品
- 实验耗材与器具
- 生化试剂/化学试剂
- 菌种鉴定服务
行业动态
您现在的位置: 网站首页 >> 行业动态
“纳米-生物杂化系统”脱氮研究获新进展
[所属分类:行业动态] [发布时间:2025-6-3] [发布人:杨晓燕] [阅读次数:] [返回]
“纳米-生物杂化系统”脱氮研究获新进展
作者:朱汉斌 来源:中国科学报
山东拓普生物工程有限公司 http://www.topbiol.com
近日,中国科学院广州能源研究所生物质高值化利用研究中心生物质能生化转化科研团队利用能量耦合策略,在“纳米-生物杂化系统”脱氮研究方面取得系列进展,并设计出一种新型“纳米-生物杂化系统”。相关成果先后发表于《水研究》(Water Research)。
论文通讯作者、中国科学院广州能源研究所研究员李颖表示,该系统通过可见光输入耦合微生物铁腐蚀驱动、调节水体硝酸盐去除,在无额外有机碳源输入下,硝酸盐去除速率最高达233.3 mg N/d/L。相关成果为低碳生物脱氮领域提供了重要理论依据和技术支撑。
低碳氮比废水由于缺乏电子供体难以实现氮去除。而以零价铁作为电子供体可以实现脱氮,且该过程具有安全性高、成本低廉等优势。由于反硝化菌的代谢多样性,微生物铁氧化的作用始终是黑箱般的存在,目前受限于模式菌株的缺乏和获取胞外电子机理未知。
针对上述问题,研究团队构建了电活性菌Shewanella oneidensis和反硝化菌Pseudomonas aeruginosa共培养体系,以零价铁作为唯一电子供体,硝酸盐作为唯一电子受体,探究了“嗜铁”反硝化可行性及其反应机理。研究发现,S. oneidensis菌可作为生物引擎,收集并释放铁腐蚀产生的电子,用于P. aeruginosa菌脱氮过程。宏转录组学分析手段显示,微生物电共生过程调控编码反硝化酶、胞内电子转移蛋白以及群体感应的基因表达,对微生物脱氮具有重要作用。
在进一步在可见光调控下(λ=395 nm),该体系实现了硝酸盐的反硝化与异化还原为铵的双路径协同。研究发现在光照下通过S. oneidensis菌自组装形成的FeS纳米颗粒介导微生物电子跨膜传递,从而提升电子利用效率。该体系实现了平均63.8 mg N/d/L的硝酸盐去除率,以及27.1%的铵氮回收效率。更重要的是,该系统还成功与实际污水活性污泥耦合,在模拟废水中表现出优异的脱氮(233.3 mg N/d/L),显示出较强的工程应用潜力。
相关论文信息:https://doi.org/10.1016/j.watres.2024.122722
https://doi.org/10.1016/j.watres.2025.123780
(本文内容来源于网络,版权归原作者所有,如有侵权可后台联系删除。)
作者:朱汉斌 来源:中国科学报
山东拓普生物工程有限公司 http://www.topbiol.com
近日,中国科学院广州能源研究所生物质高值化利用研究中心生物质能生化转化科研团队利用能量耦合策略,在“纳米-生物杂化系统”脱氮研究方面取得系列进展,并设计出一种新型“纳米-生物杂化系统”。相关成果先后发表于《水研究》(Water Research)。
论文通讯作者、中国科学院广州能源研究所研究员李颖表示,该系统通过可见光输入耦合微生物铁腐蚀驱动、调节水体硝酸盐去除,在无额外有机碳源输入下,硝酸盐去除速率最高达233.3 mg N/d/L。相关成果为低碳生物脱氮领域提供了重要理论依据和技术支撑。
低碳氮比废水由于缺乏电子供体难以实现氮去除。而以零价铁作为电子供体可以实现脱氮,且该过程具有安全性高、成本低廉等优势。由于反硝化菌的代谢多样性,微生物铁氧化的作用始终是黑箱般的存在,目前受限于模式菌株的缺乏和获取胞外电子机理未知。
针对上述问题,研究团队构建了电活性菌Shewanella oneidensis和反硝化菌Pseudomonas aeruginosa共培养体系,以零价铁作为唯一电子供体,硝酸盐作为唯一电子受体,探究了“嗜铁”反硝化可行性及其反应机理。研究发现,S. oneidensis菌可作为生物引擎,收集并释放铁腐蚀产生的电子,用于P. aeruginosa菌脱氮过程。宏转录组学分析手段显示,微生物电共生过程调控编码反硝化酶、胞内电子转移蛋白以及群体感应的基因表达,对微生物脱氮具有重要作用。
在进一步在可见光调控下(λ=395 nm),该体系实现了硝酸盐的反硝化与异化还原为铵的双路径协同。研究发现在光照下通过S. oneidensis菌自组装形成的FeS纳米颗粒介导微生物电子跨膜传递,从而提升电子利用效率。该体系实现了平均63.8 mg N/d/L的硝酸盐去除率,以及27.1%的铵氮回收效率。更重要的是,该系统还成功与实际污水活性污泥耦合,在模拟废水中表现出优异的脱氮(233.3 mg N/d/L),显示出较强的工程应用潜力。
相关论文信息:https://doi.org/10.1016/j.watres.2024.122722
https://doi.org/10.1016/j.watres.2025.123780
(本文内容来源于网络,版权归原作者所有,如有侵权可后台联系删除。)